

Expressing Equations

Name: _____

Solve each problem.

- 1) A school had to buy 5 new science books and it ended up costing \$279.85 total. Write an equation that can be used to express the relationship between the total cost(t) and the number of books(b) purchased.

- 2) Using a water hose for 86 minutes used up 101.48 total gallons of water. Write an equation that can be used to express the relationship between the total gallons used (t) and the minutes(m) used.

- 3) The combined weight of 19 concrete blocks is 107.73 kilograms. Write an equation that can be used to express the relationship between the total weight(t) and the number of concrete blocks(b) you have.

- 4) It cost \$1,089.36 for 89 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost(t) and the pounds of beef jerky(p) purchased.

- 5) In a game defeating 23 enemies earns you 8,050 total points. Write an equation that can be used to express the relationship between the total points earned (t) and the number of enemies(e) you defeat.

- 6) Robin traveled 104.28 kilometers in 79 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled(t) and the minutes(m) it took.

- 7) You can buy 22 pieces of chicken for \$42.46. Write an equation that can be used to express the relationship between the total price(t) and the pieces of chicken(c) you buy.

- 8) A company used 380 lemons to make 76 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed (t) for each bottle of lemonade (b).

- 9) A chef bought 24 bags of oranges at the supermarket and it cost her \$67.92. Write an equation that can be used to express the relationship between the total cost(t) and the number of bags of oranges(b) purchased.

- 10) Using 81 boxes of nails a carpenter was able to finish 729 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed(t) and the boxes of nails(b) used.

Answers

1. _____
2. _____
3. _____
4. _____
5. _____
6. _____
7. _____
8. _____
9. _____
10. _____

Solve each problem.

1) A school had to buy 5 new science books and it ended up costing \$279.85 total. Write an equation that can be used to express the relationship between the total cost(t) and the number of books(b) purchased.

2) Using a water hose for 86 minutes used up 101.48 total gallons of water. Write an equation that can be used to express the relationship between the total gallons used (t) and the minutes(m) used.

3) The combined weight of 19 concrete blocks is 107.73 kilograms. Write an equation that can be used to express the relationship between the total weight(t) and the number of concrete blocks(b) you have.

4) It cost \$1,089.36 for 89 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost(t) and the pounds of beef jerky(p) purchased.

5) In a game defeating 23 enemies earns you 8,050 total points. Write an equation that can be used to express the relationship between the total points earned (t) and the number of enemies(e) you defeat.

6) Robin traveled 104.28 kilometers in 79 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled(t) and the minutes(m) it took.

7) You can buy 22 pieces of chicken for \$42.46. Write an equation that can be used to express the relationship between the total price(t) and the pieces of chicken(c) you buy.

8) A company used 380 lemons to make 76 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed (t) for each bottle of lemonade (b).

9) A chef bought 24 bags of oranges at the supermarket and it cost her \$67.92. Write an equation that can be used to express the relationship between the total cost(t) and the number of bags of oranges(b) purchased.

10) Using 81 boxes of nails a carpenter was able to finish 729 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed(t) and the boxes of nails(b) used.

Answers

1. **t = b55.97**

2. **t = m1.18**

3. **t = b5.67**

4. **t = p12.24**

5. **t = e350**

6. **t = m1.32**

7. **t = c1.93**

8. **t = b5**

9. **t = b2.83**

10. **t = b9**

Solve each problem.

1) A school had to buy 5 new science books and it ended up costing \$279.85 total. Write an equation that can be used to express the relationship between the total cost(t) and the number of books(b) purchased.

2) Using a water hose for 86 minutes used up 101.48 total gallons of water. Write an equation that can be used to express the relationship between the total gallons used (t) and the minutes(m) used.

3) The combined weight of 19 concrete blocks is 107.73 kilograms. Write an equation that can be used to express the relationship between the total weight(t) and the number of concrete blocks(b) you have.

4) It cost \$1,089.36 for 89 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost(t) and the pounds of beef jerky(p) purchased.

5) In a game defeating 23 enemies earns you 8,050 total points. Write an equation that can be used to express the relationship between the total points earned (t) and the number of enemies(e) you defeat.

6) Robin traveled 104.28 kilometers in 79 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled(t) and the minutes(m) it took.

7) You can buy 22 pieces of chicken for \$42.46. Write an equation that can be used to express the relationship between the total price(t) and the pieces of chicken(c) you buy.

Answers

1. _____
2. _____
3. _____
4. _____
5. _____
6. _____
7. _____
8. _____
9. _____
10. _____